Université des frères Mentouri- Constantine 1 Faculté des sciences de la nature et de la vie 1ère année (département d'enseignement commun SNV) Année universitaire : 2023-2024 THERMODYNAMIQUE ET CHIMIE DES SOLUTIONS MINERALES

Série de TD Nº6

Chapitre VI: Cinétique chimique الفصل السادس: حركية التفاعل الكيميائي

ملخص

Ordre الرتبة	Loi de vitesse قانون السرعة	Equation المعادلة العامة	Représentation graphique الرسم البياني	Pente الميل	Unité de k K وحدة	Temps de Demi-vie $t_{1/2}$ زمن نصف التفاعل
0	V = k	$[A]_t = -kt + [A]_0$	$[A]_t = f(t)$	- k	Mol/L.s	$[A]_0/2k$
1	V=k[A]	$Ln([A]_t / [A]_0) = -kt$	$Ln[A]_t = f(t)$	- k	s ⁻¹	Ln2/k
2	$V = k [A]^2$	$(1/[A]_t) = kt + (1/[A]_0)$	$(1/[A]_t) = f(t)$	+ k	l/mol .s	$1/k[A]_0$

التمرين 1:

لدينا عند 25 درجة مئوية ، تفاعل التصبن التالي:

 $CH_3COOC_2H_5 + NaOH \rightarrow CH_3COONa + C_2H_5OH$

 $a_0 = 0.01 \; \text{mol/L}$ و الاستر تساوي NaOH التراكيز الابتدائية لكل من

كميات الإيثانول المتكونة بدلالة الزمن مقدمة في الجدول التالي:

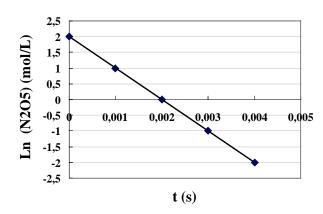
t (secondes)	0	180	240	300	360
Concentration de	0	2,6.10 ⁻³	3,17.10 ⁻³	3,66.10 ⁻³	43,11.10 ⁻³
l'alcool x (mol/L)	U	2,0.10	3,17.10	3,00.10	43,11.10

أ- بين من خلال النتائج العددية المقدمة أعلاه في الجدول أن التفاعل يتبع حركية من الرتبة الثانية.

ب- أحسب كل من:

- زمن نصف التفاعل؟

- السرعة الابتدائية للتفاعل vo?


 $t = t_{1/2}$ السرعة عند الزمن - السرعة

التمرين 2: (إضافي)

يتحللُ خماسي أكسيد لننائي النتروجين عند درجة حرارة T وفقًا للتفاعل التالي:

 $N_2O_5 \rightarrow 2 NO_2 + \frac{1}{2} O_2$

التمثيل البياني ل $\ln[N_2O_5]$ كدالة للزمن في الرسم البياني أدناه:

- a. ما هي الرتبة الحركية للتفاعل السابق ؟
- b. استنتج بيانياً قيمة الثابت k و $t_{1/2}$ والتركيز الابتدائي لـ $N_2 O_5$.
 - c. ما هي سرعة هذا التفاعل عند زمن نصف التفاعل ؟
 - d. أحسب الزمن اللازم الذي يتحلل عنده 80٪ من N_2O_5 ؟

Dr. BOUANIMBA N.

Université des frères Mentouri- Constantine 1 Faculté des sciences de la nature et de la vie 1ère année (département d'enseignement commun SNV) Année universitaire : 2023-2024 THERMODYNAMIQUE ET CHIMIE DES SOLUTIONS MINERALES

Série de TD Nº6 (Chapitre VI : Cinétique chimique)

Résumé:

A (réactifs) \rightarrow B (produits) : بصفة عامة بالنسبة الى تفاعل كيميائي : نعبر عن سرعة التفاعل بتغير تركيز المتفاعل بالنسبة للزمن كالتالى :

$$V = -\frac{d[A]}{dt} = K.[A]^{x}$$

ت:

k : ثابت السرعة x : رتبة التفاعل حركيا.

الجدول التالى يلخص قوانين حركية التفاعلات البسيطة من الرتبة صفر و واحد و اثنان.

Ordre الرتبة	Loi de vitesse قانون السرعة	Equation المعادلة العامة	Représentation graphique الرسم البياني	Pente الميل	Unité de k وحدة K	Temps de Demi-vie $t_{1/2}$ زمن نصف التفاعل
0	V = k	$[A]_t = -kt + [A]_0$	$[A]_t = f(t)$	- k	Mol/L.s	$[A]_0/2k$
1	V=k[A]	$Ln([A]_t / [A]_0) = -kt$	$Ln[A]_t = f(t)$	- k	s ⁻¹	Ln2/k
2	$V = k [A]^2$	$(1/[A]_t) = kt + (1/[A]_0)$	$(1/[A]_t) = f(t)$	+ k	l/mol .s	$1/k[A]_0$

Exercice N°01:

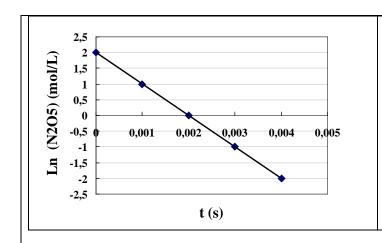
On a 25°C, la réaction de saponification suivante :

 $CH_3COOC_2H_5 + NaOH \rightarrow CH_3COONa + C_2H_5OH$

Les concentrations initiales de NaOH et de l'ester sont égales à $C_0 = 0.01 \text{ mol/L}$

Les quantités de l'éthanol formé en fonction du temps sont rapportées dans le tableau suivant :

t (secondes)	0	180	240	300	360
Concentration de l'alcool x (mol/L)	0	2,6.10	3,17.10	3,66.10 ⁻	43,11.10


- **1.** Montrer à partir des données numériques, ci-dessus, que la réaction est de l'ordre global 2.
- 2. Calculer:
- a- Le temps de demi-réaction ?
- b- La vitesse initiale de la réaction ?
- c- La vitesse au temps $t = t_{1/2}$?

Exercice N°02 : (supplémentaire)

L'hémipentoxide d'azote se décompose à une température T selon la réaction suivante :

 $N_2O_5 \rightarrow 2 NO_2 + \frac{1}{2} O_2$

La variation de ln[N₂O₅] en fonction du temps est représentée sur le graphe ci-dessous :

- a. Quel est l'ordre de la réaction ?
- b. Déduire graphiquement la constante $k,\,t_{1/2}$ et la concentration initiale de N_2O_5 ?
- c. Quelle est la vitesse de cette réaction au temps de demi-réaction ?
- d. Calculer le temps au bout du quel, 80% de l'hémipentoxide s'est décomposé?

Dr. BOUANIMBA N.